
CENG3430 Rapid Prototyping of Digital Systems

Lecture 01: Introduction to VHDL

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Basic Structure of a VHDL Module

 Library Declaration

 Entity Declaration

 Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Data Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 2

Basic Structure of a VHDL Module

A VHDL file

CENG3430 Lec01: Introduction to VHDL 3

Architecture Body
Define the internal operations of the

entity (desired functions)

Entity Declaration
Define the signals to be seen

outside externally (I/O pins)

Library Declaration
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

• Schematic Circuit of a 4-bit Comparator

*Recall: Exclusive NOR (XNOR)

– When A=B, Output Y = 0

– Otherwise, Output Y = 1

CENG3430 Lec01: Introduction to VHDL 4

A = [a3,a2,a1,a0]

B = [b3,b2,b1,b0]

equals

VHDL for programmable logic, Skahill, Addison Wesley

eqcomp4

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table

(equals=1 when A=B)

Example: 4-bit Comparator in VHDL (1/2)

• Code of 4-bit Comparator in VHDL:

eqcomp4.vhd

CENG3430 Lec01: Introduction to VHDL 5

Example: 4-bit Comparator in VHDL (2/2)

1 --the code starts here , “a comment”

2 library IEEE;

3 use IEEE.std_logic_1164.all;

4 entity eqcomp4 is

5 port (a, b: in std_logic_vector(3 downto 0);

6 equals: out std_logic);

7 end eqcomp4;

8 architecture arch_eqcomp4 of eqcomp4 is

9 begin

10 equals <= '1' when (a = b) else '0’;

11 -- “comment” equals is active high

12 end arch_eqcomp4;

Library

Declaration

Entity

Declaration

Architecture

Body

CENG3430 Lec01: Introduction to VHDL 6

Entity Declaration

1 --the code starts here , “a comment”

2 library IEEE;

3 use IEEE.std_logic_1164.all;

4 entity eqcomp4 is

5 port (a, b: in std_logic_vector(3 downto 0);

6 equals: out std_logic);

7 end eqcomp4;

8 architecture arch_eqcomp4 of eqcomp4 is

9 begin

10 equals <= '1' when (a = b) else '0’;

11 -- “comment” equals is active high

12 end arch_eqcomp4;

Library

Declaration

Entity

Declaration

Architecture

Body

Entity enclosed by the entity name eqcomp4 (entered by the user)

port defines the I/O pins

downto: define a busa, b, equals are I/O signals

I/O Signals

• An I/O signal (or I/O pin) can

– Carry logic information.

– Be implemented as a wire in hardware.

– Be “in”, “out”, “inout”, “buffer” (modes of I/O pin)

• There are many logic types of signals

1) bit: can be logic 1 or 0 only

2) std_logic: can be 1, 0, Z (high impedance), ..., etc

• Standard logic (an IEEE standard)

3) std_logic_vector: a group of wires (a bus)

• a, b: in std_logic_vector(3 downto 0); in VHDL

• a(0), a(1), a(2), a(3), b(0), b(1), b(2), b(3) are std_logic signals

CENG3430 Lec01: Introduction to VHDL 7

Class Exercise 1.1

• How many input and output pins are there in the code?

Answer: __

• What are their names and their types?

Answer: __

• What is the difference between std_logic and std_logic_vector?

Answer: __
CENG3430 Lec01: Introduction to VHDL 8

Student ID:

Name:

Date:

eqcomp4.vhd1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 entity eqcomp4 is

4 port (a, b: in std_logic_vector(3 downto 0);

5 equals: out std_logic);

6 end eqcomp4;

7 architecture arch_eqcomp4 of eqcomp4 is

8 begin

9 equals <= '1' when (a = b) else '0’;

10 end arch_eqcomp4;

Class Exercise 1.2

CENG3430 Lec01: Introduction to VHDL 10

test1.vhd1 entity test12 is

2 port (in1, in2: in std_logic;

3 out1: out std_logic);

4 end test12;

5 architecture test12arch of test12 is

6 begin

7 out1 <= in1 or in2;

8 end test12_arch;

• Give line numbers of (1) entity declaration and (2) arch. body.

Answer: __

• Find an error in the VHDL code.

Answer: __

• Draw the schematic chip and names the pins.

Answer: __

• Underline the words that are defined by users in the code.

Answer: __

Student ID:

Name:

Date:

Modes of I/O Pins

• Modes of I/O pin should be explicitly specified in

port of entity declaration:

Example:

entity do_care is port(

s: in std_logic_vector(1 downto 0);

y: buffer std_logic);

end do_care;

• There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

CENG3430 Lec01: Introduction to VHDL 12

Class Exercise 1.3

CENG3430 Lec01: Introduction to VHDL 13

• State the difference between out and buffer.

Answer: ___________________________________

__

• Based on the following schematic, identify the modes

of the IO pins.

VHDL for programmable logic, Skahill, Addison Wesley

A

B

C

D

F

G

E

Student ID:

Name:

Date:

Reviews for

Common

Logic Gates

Architecture Body (More in Lec03)

• Architecture Body: Defines the operation of the chip

Example:

architecture arch_eqcomp4 of eqcomp4 is

begin

equals <= '1' when (a = b) else '0’;

-- “comment” equals is active high

end arch_eqcomp4;

How to read it?

– arch_eqcomp4: the architecture name (entered by the user)

– equals, a, b: I/O signal pins designed by the user in the entity

declaration

– begin … end: define the internal operation

• equals <= '1' when (a = b) else '0’;

– “--”: comment

CENG3430 Lec01: Introduction to VHDL 15

Class Exercise 1.4

• Draw the schematic circuit for the following code.
1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity test is

4 port(in1: in std_logic_vector (2 downto 0);

5 out1: out std_logic_vector (3 downto 0));

6 end test;

7 architecture test_arch of test is

8 begin

9 out1(0)<= in1(1);

10 out1(1)<= in1(2);

11 out1(2)<= not(in1(0) and in1(1));

12 out1(3)<= '1';

13 end test_arch ;

CENG3430 Lec01: Introduction to VHDL 16

Student ID:

Name:

Date:

Outline

• Basic Structure of a VHDL Module

 Library Declaration

 Entity Declaration

 Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Data Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 18

Objects: 3 Different Data Objects

• Data objects are assigned types and hold values of

the specified types.

• Data objects belong to one of three classes:

1) Constants (Globla): Hold unchangeable values

• E.g., constant width: INTEGER := 8;

2) Signals (Globla): Represent physical wires

• E.g., signal count: BIT := ‘1’;

3) Variables (Local): Used only by programmers for

internal representation (less direct relationship to the

synthesized hardware)

• E.g., variable flag: BOOLEAN := TRUE;

• Data objects must be declared before being used.

CENG3430 Lec01: Introduction to VHDL 19

Constant Objects (Global)

constant CONST_NAME: <type> := <value>;

Note: Constants must be declared with initialized values.

• Examples:

– constant CONST_NAME: STD_LOGIC := 'Z';

– constant CONST_NAME: STD_LOGIC_VECTOR (3

downto 0) := "0-0-";

• ‘-’ is don’t care

• Constants can be declared in

– Anywhere allowed for declaration.

CENG3430 Lec01: Introduction to VHDL 20

Signal Objects (Global)

signal SIG_NAME: <type> [: <value>];

Note: Signals can be declared without initialized values.

• Examples:

– signal s1_bool: BOOLEAN;

• Declared without initialized value

– signal xsl_int1: INTEGER := 175;

– signal su2_bit: BIT := ‘1’;

• Signals can be declared

– Either in the “port” of the entity declaration,

– Or before the “begin” of the architecture body.

CENG3430 Lec01: Introduction to VHDL 21

Recall: Modes of I/O Pins

• If a signal is declared in port, it is used as I/O pins.

• Modes of I/O pin should be further explicitly specified

in port of entity declaration:

Example:

entity do_care is port(

s: in std_logic_vector(1 downto 0);

y: buffer std_logic);

end do_care;

• There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity
CENG3430 Lec01: Introduction to VHDL 22

Variable Objects (Local)

variable VAR_NAME: <type> [: <value>];

Note: Variables can be declared without initialized values.

• Examples:

– variable v1_bool: BOOLEAN:= TRUE;

– variable val_int1: INTEGER:=135;

– variable vv2_bit: BIT;

• Declared without initialized value

• Variables can only be declared/used in the process

statement in the architecture body (see Lec03).

CENG3430 Lec01: Introduction to VHDL 23

Signals and Variables Assignments

• Both signals and variables can be declared without

initialized values.

• Their values can be assigned after declaration.

– Syntax of signal assignment:

SIG_NAME <= <expression>;

– Syntax of variable assignment:

VAR_NAME := <expression>;

CENG3430 Lec01: Introduction to VHDL 24

Class Exercise 1.5

CENG3430 Lec01: Introduction to VHDL 25

Student ID:

Name:

Date:

1 entity nandgate is

2 port (in1, in2: in STD_LOGIC;

3 out1: out STD_LOGIC);

4 end nandgate;

5 architecture nandgate_arch of nandgate is

6 ___

7 begin

8 connect1 <= in1 and in2;

9 out1<= not connect1;

10 end nandgate_arch;

• Declare a signal named “connect1” in Line 6.

• Can you assign an I/O mode to this signal? Why?

Answer: __

• Where can we declare signals?

Answer: __

• Draw the schematic circuit for the code.

What we learnt so far

• Data Objects

 Constant

 Signal

• In Entity Declaration (Port): External I/O Pins

Modes of I/O Pins:

 In

 Out

 Inout

 Buffer

• In Architecture Body: Internal Signals

 Variable

CENG3430 Lec01: Introduction to VHDL 27

Outline

• Basic Structure of a VHDL Module

 Library Declaration

 Entity Declaration

 Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Data Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 28

Outline

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 29

Identifiers

• Identifiers: Used to represent and name an object

– An object can be constant, signal or variable.

• Rules for naming data objects:

1) Made up of alphabets, numbers, and underscores

2) First character must be a letter

3) Last character CANNOT be an underscore

4) NOT case sensitive

• Txclk, Txclk, TXCLK, TxClk are all equivalent

5) Two connected underscores are NOT allowed

6) VHDL-reserved words may NOT be used

CENG3430 Lec01: Introduction to VHDL 30

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ite_r_vhdl_reserved_words.htm

Class Exercise 1.6

• Determine whether the following identifiers are legal

or not. If not, please give your reasons.

– tx_clk

– _tx_clk

– Three_State_Enable

– 8B10B

– sel7D

– HIT_1124

– large#number

– link__bar

– select

– rx_clk_

CENG3430 Lec01: Introduction to VHDL 31

Student ID:

Name:

Date:

Alias

• An alias is an alternate identifier for an existing object.

– It is NOT a new object.

– Referencing the alias is equivalent to the original one.

– It is often used as a convenient method to identify a range

of an array (signal bus) type.

• Example:

– signal sig_x: std_logic_vector(31 downto 0);

– alias top_x: std_logic_vector (3 downto 0)

is sig_x(31 downto 28);

CENG3430 Lec01: Introduction to VHDL 33

Outline

• Basic Structure of a VHDL Module

 Library Declaration

 Entity Declaration

 Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Data Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 34

Data Types in VHDL

• VHDL is strongly-typed language.

– Data objects of different base types CANNOT to assigned

to each other without the use of type-conversion.

• A type has a set of values and a set of operations.

• Common types can be classified into two classes:

– Scalar Types

• Integer Type

• Floating Type

• Enumeration Type

• Physical Type

– Composite Types

• Array Type

• Record Type

CENG3430 Lec01: Introduction to VHDL 35

Scalar: Integer Type

• An integer type can be defined with or without

specifying a range.

– If a range is not specified, VHDL allows integers to have a

minimum rage of

−2,147,483,647 𝑡𝑜 2,147,483,647

−(231− 1) 𝑡𝑜 (231 − 1)

– Or a range can be specified, e.g.,

variable a: integer range 0 to 255;

CENG3430 Lec01: Introduction to VHDL 36

Scalar: Floating Type

• Floating point type values are used to approximate

real numbers.

• The only predefined floating type is named REAL,

which includes the range

−1.0𝐸38 𝑡𝑜 + 1.0𝐸38

• Floating point types are rarely used (or even

not supported) in code to be synthesized (see Lec02).

– Because of its huge demand of resources.

CENG3430 Lec01: Introduction to VHDL 37

Scalar: Enumeration Type (1/2)

• How to introduce an abstract concept into a circuit?

• An enumeration type is defined by a list of values.

– The list of values may be defined by users.

– Example:

type colors is (RED, GREEN, BLUE);

signal my_color: colors;

• Enumeration types are often defined for

state machines (see Lec04).

• There are two particularly useful enumeration types

predefined by the IEEE 1076/1993 standards.

– type BOOLEAN is (FALSE, TRUE);

– type BIT is (‘0’, ‘1’);

CENG3430 Lec01: Introduction to VHDL 38

Scalar: Enumeration Type (2/2)

• An enumerated type is ordered.

– The order in which the values are listed in the type

declaration defines their relation.

– The leftmost value is less than all other values.

– Each values is greater than the one to the left, and less

than the one to the right.

• Example:

type colors is (RED, GREEN, BLUE)

signal my_color: colors;

– Then a comparison of my_color can be:

when my_color >= RED

CENG3430 Lec01: Introduction to VHDL 39

Scalar: Physical Type

• Physical type values are used as measurement units.

– They are used mainly in simulations (see Lab01).

• The only predefined physical type is TIME.

– Its primary unit is fs (femtoseconds) as follows:
type time is range -2147483647 to 2147483647

units

fs;

ps = 1000 fs;

ns = 1000 ps;

us = 1000 ns;

ms = 1000 us;

sec = 1000 ms;

min = 60 sec;

hr = 60 min;

end units;

CENG3430 Lec01: Introduction to VHDL 40

Composite: Array Type

• An object of an array type consists of multiple

elements of the same type.

• The most commonly used array types are those

predefined by the IEEE 1076 and 1164 standards:
type BIT_VECTOR is array (NATURAL range <>) of bit;

type STD_LOGIC_VECTOR is array (NATURAL range <>) of std_logic;

– Their range are not specified (using range <>), and only

bounded by NATURAL (positive integers).

• Example:
port (a: in std_logic_vector (3 downto 0);

b: in std_logic_vector (0 to 3);

equals: out std_logic);

– a, b are both 4-bit vectors of std_logic.

CENG3430 Lec01: Introduction to VHDL 41

Class Exercise 1.7

• Given

a: std_logic_vector (3 downto 0);

• Create a 4-bit bus c using “to” instead of “downto”:

• Draw the circuit for this vector assignment c <= a

CENG3430 Lec01: Introduction to VHDL 42

Student ID:

Name:

Date:

Composite: Record Type

• An object of a record type consists of multiple

elements of the different types.

– Individual fields of a record can be used by element name.

• Example:

type iocell is record

buffer_in: bit_vector(7 downto 0);

bnable: bit;

buffer_out: bit_vector(7 downto 0);

end record;

– Then we can use the record as follows:

signal bus_a: iocell;

signal vec: bit_vector(7 downto 0);

bus_a.buffer_in <= vec;
CENG3430 Lec01: Introduction to VHDL 44

Types and Subtypes

• A subtype is a type with a constraint.

– Subtypes are mostly used to define objects based on

existing base types with a constraint.

• Example:

– Without subtype

signal my_byte: bit_vector(7 downto 0);

– With subtype:

subtype byte is bit_vector(7 downto 0);

signal my_byte: byte;

• Subtypes are also used to resolve a base type.

– A resolution function is defined by the IEEE 1164 standard.

subtype std_logic is resolved std_ulogic;

• Resolved is the name of the resolution function.
CENG3430 Lec01: Introduction to VHDL 45

Resolved Logic Concept

• Resolved Logic (Multi-value Signal): Multiple outputs

can be connected together to drive a signal.

– The resolution function is used to determine how multiple

values from different sources (drivers) for a signal will be

reduced to one value.

• Single-value Signal Assignment:

signal a, c: bit;

c <= a;

• Multi-value Signal Assignment:

signal a, b, c: bit;

c <= a;

c <= b;

CENG3430 Lec01: Introduction to VHDL 46

a c

b

?

We need to “resolve” it!

a c

std_logic vs. std_ulogic (1/2)

• std_logic: a type of resolved logic, that means a

signal can be driven by 2 inputs.

• std_ulogic (“u” means unresolved): a type of

unresolved logic, that means a signal CANNOT

be driven by 2 inputs.

CENG3430 Lec01: Introduction to VHDL 47

a c

b

?

std_logic vs. std_ulogic (2/2)

• How to use it?

library IEEE;

use IEEE.std_logic_1164.all;

entity

architecture

CENG3430 Lec01: Introduction to VHDL 48

IEEE 1164: 9-valued Logic Standard

• ‘U’: Uninitialized

• ‘X’: Forcing Unknown

• ‘0’: Forcing 0

• ‘1’: Forcing 1

• ‘Z’: High Impedance (Float)

• ‘W’: Weak Unknown

• ‘L’: Weak 0

• ‘H’: Weak 1

• ‘-’: Don’t care

CENG3430 Lec01: Introduction to VHDL 49

U X 0 1 Z W L H –

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 X 0 0 0 0 X

1 U X X 1 1 1 1 1 X

Z U X 0 1 Z W L H X

W U X 0 1 W W W W X

L U X 0 1 L W L W X

H U X 0 1 H W W H X

VHDL Resolution Table

• Rule: When 2 signals meet, the forcing signal dominates.

bit vs. std_logic

• bit is a predefined type and can only represents the

idealized value 0 or 1.

– type bit IS ('0', '1’);

• std_logic provides more realistic modeling of

signals within a digital system.

– type std_ulogic IS ('U', 'X', '0', '1', 'Z',

'W', 'L', 'H', '-');

– SUBTYPE std_logic IS resolved std_ulogic;

• Type-conversion functions (i.e., to_bit & to_std_logic)

are needed for the assignment between these two.

– Recall: VHDL is strongly-typed language.

• Data objects of different base types CANNOT to assigned to each

other without the use of type-conversion.

CENG3430 Lec01: Introduction to VHDL 50

Outline

• Basic Structure of a VHDL Module

 Library Declaration

 Entity Declaration

 Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Data Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 51

Attributes (1/2)

• An attribute provides information about items such as

entities, architecture, types, and signals.

– There are several useful predefined value, signal, and

range attributes (see VHDL Predefined Attributes).

• Example:

type count is integer range 0 to 127;

type states is (idle, decision, read, write);

type word is array(15 downto 0) of std_logic;

– Then

CENG3430 Lec01: Introduction to VHDL 52

count’left = 0

states’left = idle

word’left = 15

count’right = 127

states’right = write

word’right = 0

https://www.csee.umbc.edu/portal/help/VHDL/attribute.html

Attributes (2/2)

• Another important signal attribute is the ‘event.

– This attribute yields a Boolean value of TRUE if an event

has just occurred on the signal.

– It is used primarily to determine if a clock has transitioned.

• Example (more in Lec04):

…

port(my_in, clock: in std_logic;

my_out: out std_logic);

…

if clock = ‘1’ and clock’event then

my_out <= my_in;

CENG3430 Lec01: Introduction to VHDL 53

Outline

• Basic Structure of a VHDL Module

 Library Declaration

 Entity Declaration

 Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Data Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 54

VHDL Operators

CENG3430 Lec01: Introduction to VHDL 55

VHDL
Operators

Logical /
Relation
e.g and,=

Shift
e.g.
SLR

Basic
e.g., +,-,&,

Abs,**

Basic Operators

+ arithmetic add, for integer, float.

- arithmetic subtract, for integer, float.

* multiplication

/ division

rem remainder

mod modulo (𝐴 𝑚𝑜𝑑 𝐵 = 𝐴 − 𝐵 ∗ 𝑁 ,𝑁 ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)

abs absolute value

** exponentiation (e.g., 2**3 is 8)

& concatenation (e.g., ‘0’ & ‘1’ → “01”)

CENG3430 Lec01: Introduction to VHDL 56

Shift / Rotate Operators

• Logical Shift and Rotate

– sll shift left logical, fill blank with 0

– srl shift right logical, fill blank with 0

– rol rotate left logical, circular operation

• E.g. “10010101” rol 3 is “10101100”

– ror rotate right logical, circular operation

• Arithmetic Shift

– sla shift left arithmetic, fill blank with 0, same as sll

– sra shift right arithmetic, fill blank with sign bit (MSB)

CENG3430 Lec01: Introduction to VHDL 57

Logical / Relation Operators

• Logical Operators: and, or, nand, nor, xor, xnor,
not have their usual meanings.
– E.g., nand is NOT associative

• (A nand B) nand C ≠ A nand (B nand C)

• A nand B nand C is illegal

• Relation Operators (result is Boolean)
= equal

/= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

CENG3430 Lec01: Introduction to VHDL 58

Class Exercise 1.8

• Consider the circuit:

– What is this circuit for?

Answer: ________________

– Fill in the truth table.

– Fill in the blanks of code.

CENG3430 Lec01: Introduction to VHDL 59

in1 in2
out

00

out

10

out

11

out

01

0 0

1 0

1 1

0 1

1 entity test16 is

2 port (in1,in2: in std_logic;

3 out00,out01,out10,out11: out std_logic);

4 end test16;

5 architecture test16_arch of test16 is

6 begin

7 out00 <= not(________________);

8 out10 <= not(________________);

9 out11 <= not(________________);

10 out01 <= not(________________);

11 end test16_arch;

Student ID:

Name:

Date:

Summary

• Basic Structure of a VHDL Module

 Library Declaration

 Entity Declaration

 Architecture Body

• Data Objects, Identifiers, Types, and Attributes

– Data Objects

 Constant

 Signal

 Variable

– Data Identifier

– Data Types

– Data Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 61

Review: Basic Gates in Logic Circuits

CENG3430 Lec00: Course Information http://www.nutsvolts.com/magazine/article/understanding_digital_buffer_gate_and_ic_circuits_part_1 62

Review: NAND and NOR Gates

• In many technologies, implementation of NAND gates

or NOR gates is easier than that of AND or OR gates.

– NAND Gate:

– NOR Gate:

• Any logic function can be realized using only NAND

gates or only NOR gates.
CENG3430 Lec00: Course Information 63http://www.nutsvolts.com/magazine/article/understanding_digital_buffer_gate_and_ic_circuits_part_1

(analogy)

Review: Tristate Logic

• The concept of tristate logic is also essential in digital

system designs.

– Directly connecting outputs of two gates together might not

operate properly, and might cause damage to the circuit.

– One ways is to use tristate buffers.

• Tristate buffers are gates with a high impedance state

(High-Z or Z) in addition to high and low logic states.

– High impedance state is equivalent to an open circuit.

CENG3430 Lec00: Course Information 64

Review: Buffer Gate

• Double inversion would “cancel” each other out.

– A weak signal may be amplified by means of two inverters.

• For this purpose, a special logic gate called a buffer

gate is manufactured to perform the double inversion.

– Its symbol is simply a triangle, with no inverting “bubble” on

the output terminal:

CENG3430 Lec01: Introduction to VHDL 65https://www.allaboutcircuits.com/textbook/digital/chpt-3/buffer-gate/

